Chapter 5

Generic Second Order System

Second order systems can be mathematically tractable to a great depth and
derive mathematical expressions for system response. Using those expres-
sions a feedback controller can be designed for second order systems very
effectively. Most industrial plants can be accurately modeled as second order
systems. The generic second order model is shown in Fig.5
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Figure 5.1: Generic second order model

The generic second order system is

w2

b 5.1
$2 4+ 2Cwps + w? (5:1)
where ¢ and w,, are damping ration and natural undamped frequency. In the
height controlled stabilized table discussed earlier, the closed loop transfer

Gga(s) =

function —’7—32 Tosipriy 1810 fact presented as a generic second order system
1 (k+K)/m

R o me e mym after substitution for o = b/2m,p = k/m, and n =

1/m. The three system parameters m,k,b determine the two generic second

— kK = b i
order parameters w, = {/*==, and ( TR The DCG of the generic

second order system limg 05 e /(ijk)(k"l Rjm = 1, whereas the actual system
has DOG = —~. The characteristic equation of the generic second order

i k+K "
system 1s

s* + 20wps + w2 =0 (5.2)
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and the poles are

81,89 = —Cwp £ wpy/C2—1 (5.3)

The response then is determined by ( as follows.

1. ¢ >1 over damped (slow, no oscillations)

2. ¢ =1 critically damped (quickest, nonoscillatory)
3. 0< ¢ <1 under damped (damped oscillations)
4. ¢ =0 stable sustained oscillations (simple harmonic motion)

5. ¢ <0 unstable response

out of all these possible responses, the damped oscillations 0 < ¢ < 1 is
the most interesting response for mathematical analysis. This response is
very common in industrial process control plants, where quick response with
some oscillations is acceptable. The next section will thoroughly analyze this
response.

5.1 Under-damped Generic Second Order
System (0 < ( < 1)

In this response, the two poles in (5.3) can be written as follows.

51,82 = —Cwy, & jwny/1 —¢?

= —(wp £ Jwy (5.4)

where wy = wpy/1 — (2 is the damped frequency. The two poles can be
illustrated as in Fig.5.2. With the complex conjugate pair of poles, generic
second order system (5.1) can be written as follows.
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(3 + Cwn + jwd)(s + Cwn - jwd)
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(s + Cwn)? + w?
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 wa (s + Cwy)? + wi .
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Figure 5.2: Pole pair of a under-damped generic second order system

The unit step (%) response of the second order system is therefore

Wq 1
wa (8 + Cwn)? +w?'s

The response in time-domain can be obtained by inverse Laplace transforma-
tion of (5.6). The middle term of (5.6) looks similar to the Laplace transform
of sin(wyt) except that s being replaced by s+ Cw,, which is the result of an
exponential scaling e~¢“»! in time-domain. Thus, the inverse Laplace trans-
form of the middle term should be e~*“»!sin(wqt). However, the presence
of 1/s term confirms that it should be the integral of the inverse Laplace
transform of the second term. Therefore, inverse Laplace transform of (5.6)
should be [e~%“n!sin(wyt)dt. This integral has been evaluated in (A.3) in
Appendix.A for (w, = 0 and wy; = w. Using (A.3) and substituting for
0 = (wy, and w = wy, the response can be determined as follows

Y(s) = (5.6)

(1) = “a | M n(wd +0) (5.7
y(t) = =2 - sin(wqy )
wa |wi+Cwn w2 4 202

/1—(2
where tan ¢ = 4 = 1T< As wg = wy/1T — (2. Also because (?w? + w3 =

(o + wn (1= (%) = wp,

w2 [wg e wnt
y(t) = o L)—% T sin(wat + 425)]
e~(wnt )
= 1- ]_7—@ Sll’l(u.)dt + ¢) (58)

This is the unit step response of an under damped (0 < ¢ < 1) generic second
order system.
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Peak Time t,, and Rise Time ¢,

Peak time ¢, is the time that the response takes to reach its first peak. The
rise time ¢, is the time between 10% and 90% of the response in the first
peak. By differentiation of (5.8),

y(t) = —ﬁ [wde_q‘””t cos(wgt + ¢) — sin(wqt + aﬁ)e‘@”tcwn]
Wn

R )

_ Wn —Cuwnt o (
= ——c¢ sin (wgt + ¢ — @)
V1—=(?
Wn, —Cuwnt o

when ¢ = ¢, y(t)=0, therefore sin(wgt,)=0, which yields to

wdtp = 7
wp\/1 —C%y =
t, = S (5.10)

Wn\/l_c2

A rule of thumb for rise time can be determined if we set a reasonable value
for (. It is also reasonable to assume that ¢, =~ %’ Therefore, by setting
¢ = 0.5, the rule of thumb for rise time is

1.8
t, &~ — 5.11
= (5.11)
Peak Overshoot PO
Peak value of y(t) in (5.8) occurs at t =t
1
1 — ———e“""*sin (wgt, + ¢) = 1 + PO (5.12)

V1-=¢?

where PO is the percentage overshoot. From (5.10) wgt, = 7, and therefore

Wty = S With these two equivalent expressions substituted in (5.12)
we have
1 —qr
—————=eV1-Zgin (1 + ¢) = PO (5.13)

Ve
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Because sinm + ¢ = —sin¢ = /1 — (2, (5.13) can be written as follows.

R
T CQem\/l—@ = PO

evi-Z = PO
(m
————— = InP .14
Ve n PO (5.14)
In PO
tanf = —
™
g = tan_l{—ln:O} (5.15)

where damping angle f = 7/2 — ¢

Settling Time ¢,

Settling time ¢, is the time required for the oscillation to decay down to 1%
of the steady state level. Therefore, referring to (5.8)

e~Swnts ~ 0.01
—Cwpts =~ 1n0.01
4.6
ty o (5.16)

5.2 Desired Response

In system design, the maximum overshoot PO, is specified, and from (5.15)
the corresponding damping angle can be determined. The actual design needs
to make sure that the oscillations are controlled below this level, and therefore
the damping angle should obey the following constraint.

In PO,00 }

™

B> tan™! {— (5.17)

Furthermore, if a maximum settling time ¢, .4, is specified, the corresponding
decay constant (w, can be determined from (5.16). The actual system has
to settle before this time, therefore the constraint for decay constant can be
determined as follows.

4.6

ts,max

Cwy > (5.18)
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Finally, if the response has to rise before a maximum time of ¢, 4., the
oscillation can be improved according to (5.11) as follows.

1.8

Wy, > (5.19)

tr,maw

Considering these three constraints, the appropriate region to locate the two
poles can be determined as illustrated as in Fig.5.2.

1.8
"0, = -
[r,max‘m
appropriate B= tan—l" - |
region for In PO

Figure 5.3: ( and w constraints for desired response

5.3 Example

A generic second order system is given by m in that w, = v43 =

6.56[rad/s], ¢ = 55 =0.23, and ¢ = tan~' Y= = 1.34[rad]. From (5.8),
the response can be determined as y(t) = 1 — 1.03e™ %! sin(6.38¢ + 1.34).

Response rise time ¢, =~ % = 0.27[s], and percentage overshoot

—(x
PO = eVi- = 048, and settling time t, ~ X% 3.01[s] can be

Cwn -
calculated. The response is illustrated in Fig.5.4.

The response is not desirable due to the presence of significant over-
shoot and long settling time. If the overshoot has to be controlled be-
low 5% (i.e. POpe: =0.05), and response has to settle before 2s (i.e.

tsmaz=2). Then, from (5.18), (w, > %. Lets select (w,=2.5, and from
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Step Response

Amplitude

Time (sec)

Figure 5.4: Second order generic response

(5.17) 8 > tan '{—1n0.05/7} = 46.36°. Lets select § = 50°. Because

wp1— (2 = éﬁ’l—”q; = % = 2.1, the two poles can be determined as

—Cwp £ jwp/1 — (2 = —2.5 + j2.1. The desired characteristic equation is
$2+2x2.55+(2.52+2.1%) = s*+5s+10.66, and desired generic second order

system is 329 Then, the resulting settling time is £,=4.6/2.5=1.84[s],
.5

__¢n .
and peak overshoot from (5.14) PO = ¢ Vi-& = ¢~ 31 = 0.02, and from
(5.10) peak time ¢,=1.26[s], which are all acceptable. The desired response
is illustrated in Fig.5.5
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Step Response
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Figure 5.5: Second order desired response



